Extensive, locally complete abstract interpretation

Flavio Ascari
flavio.ascari@phd.unipi.it
Supervisors
Roberto Bruni Roberta Gori

University of Pisa

Università di Pisa

Overview

(1) Abstract interpretation
(2) Completeness
(3) Refinement rule
(4) Conclusions

Static analysis

Get information on program behaviour without executing it.

$$
\begin{aligned}
& \text { int } a[6], b[6] ; \\
& \text { for (int } i=0 ; i<=5 ;++i)\{ \\
& \quad \text { int } j=i * 2 \text {; } \\
& \quad a[j]+=1 ; \\
& \quad b[i]+=i ;
\end{aligned}
$$

\downarrow

Access to a happens out of bounds. Access to b is always correct.

Abstract interpretation

Abstract interpretation

$$
\begin{gathered}
P^{\sharp} \xrightarrow{\llbracket r]^{A}} Q^{\sharp} \\
\uparrow \\
P \xrightarrow{\xrightarrow{\| r} \llbracket} Q
\end{gathered}
$$

```
int a[6], b[6];
for (int i = 0; i <= 5; ++i) { // i in [0, 5]
    int j = i * 2;
// j in [0, 5] * 2
// = [0, 10]
a[j] += 1;
b[i] += i;
}
```


Static analysis - over-approximation

False alarm!

Static analysis - over-approximation

Completeness

Completeness
A is complete for r if

$$
A \llbracket r \rrbracket A=A \llbracket r \rrbracket
$$

Completeness

Completeness
A is complete for r if

$$
A \llbracket r \rrbracket A=A \llbracket r \rrbracket
$$

Local completeness
A is locally complete for r on P if

$$
A \llbracket r \rrbracket A(P)=A \llbracket r \rrbracket(P)
$$

Completeness

Completeness
A is complete for r if

$$
A \llbracket r \rrbracket A=A \llbracket r \rrbracket
$$

Local completeness
A is locally complete for r on P if

$$
A \llbracket r \rrbracket A(P)=A \llbracket r \rrbracket(P)
$$

Both extensional properties, only depending on $\llbracket r \rrbracket$ and not r.

Completeness

Completeness
A is complete for r if

$$
A \llbracket r \rrbracket A=A \llbracket r \rrbracket
$$

Local completeness

A is locally complete for r on P if

$$
A \llbracket r \rrbracket A(P)=A \llbracket r \rrbracket(P)
$$

Both extensional properties, only depending on $\llbracket r \rrbracket$ and not r. However state of the art techniques prove intensional properties such as

$$
\begin{aligned}
\llbracket r]_{A}^{\sharp} A & =A \llbracket r \rrbracket \\
\llbracket r \rrbracket_{A}^{\sharp} A(P) & =A \llbracket r \rrbracket(P)
\end{aligned}
$$

Intensional vs extensional
r = skip

Intensional vs extensional

$$
\begin{gathered}
r=\text { skip } \\
r^{\prime}=\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}-1
\end{gathered}
$$

Intensional vs extensional

$$
\begin{gathered}
r=\text { skip } \\
r^{\prime}=\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}-1
\end{gathered}
$$

Different syntax $r \neq r^{\prime}$

Intensional vs extensional

$$
\begin{gathered}
r=\text { skip } \\
r^{\prime}=x:=x+1 ; x:=x-1
\end{gathered}
$$

Different syntax $r \neq r^{\prime}$ but same semantics $\llbracket r \rrbracket=\llbracket r^{\prime} \rrbracket$!

Example

Analysis in $A=\operatorname{Sign}=\{\perp,+,-, 0, \top\}$.

$$
r=\text { skip }
$$

$$
r^{\prime}=x:=x+1 ; x:=x-1
$$

Example

Analysis in $A=\operatorname{Sign}=\{\perp,+,-, 0, \top\}$.

$$
\begin{gathered}
\mathrm{r}=\text { skip } \\
\llbracket r \rrbracket_{A}^{\sharp} A=\mathrm{id}=A \llbracket \mathrm{r} \rrbracket
\end{gathered}
$$

$$
\mathrm{r}^{\prime}=\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}-1
$$

Example

Analysis in $A=\operatorname{Sign}=\{\perp,+,-, 0, \top\}$.

$$
\begin{aligned}
\mathrm{r}=\mathrm{skip} & \mathrm{r}^{\prime}=\mathrm{x}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{x}-1 \\
\llbracket \mathrm{r} \rrbracket_{A}^{\sharp} A=\mathrm{id}=A \llbracket \mathrm{r} \rrbracket & \quad \llbracket \mathrm{r}^{\prime} \rrbracket_{A}^{\sharp} A \neq \mathrm{id}=A \llbracket \mathrm{r}^{\prime} \rrbracket \\
& \llbracket \mathrm{r}^{\prime} \rrbracket_{A}^{\sharp} A(0) \\
& =\llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket_{A}^{\sharp} \llbracket \mathrm{x}:=\mathrm{x}+1 \rrbracket_{A}^{\sharp}(0) \\
& =\llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket_{A}^{\sharp}(+) \\
& =\top
\end{aligned}
$$

Local Completeness Logic

$$
\begin{array}{cc}
\frac{\mathbb{C}_{P}^{A}(\llbracket \mathrm{e} \rrbracket)}{\vdash_{A}[P] \mathrm{e}[\llbracket \mathrm{e} \rrbracket P]} \text { (transfer) } & \frac{P^{\prime} \leq P \leq A\left(P^{\prime}\right) \vdash_{A}\left[P^{\prime}\right] \mathrm{r}\left[Q^{\prime}\right]}{\vdash_{A}[P] \mathrm{r}[Q]} \quad Q \leq Q^{\prime} \leq A(Q) \\
\frac{\vdash_{A}[P] \mathrm{r}_{1}[R] \vdash_{A}[R] \mathrm{r}_{2}[Q]}{\vdash_{A}[P] \mathrm{r}_{1} ; \mathrm{r}_{2}[Q]} \text { (sequx) } \\
\frac{\vdash_{A}[P] \mathrm{r}[R] \vdash_{A}[P \vee R] \mathrm{r}^{*}[Q]}{\vdash_{A}[P] \mathrm{r}^{*}[Q]} & \frac{\vdash_{A}[P] \mathrm{r}_{1}\left[Q_{1}\right] \vdash_{A}[P] \mathrm{r}_{2}\left[Q_{2}\right]}{\vdash_{A}[P] \mathrm{r}_{1} \oplus \mathrm{r}_{2}\left[Q_{1} \vee Q_{2}\right]} \text { (join) } \\
\frac{\vdash_{A}[P] \mathrm{r}[Q] Q \leq A(P)}{\vdash_{A}[P] \mathrm{r}^{*}[P \vee Q]} \text { (iterate) }
\end{array}
$$

The proof system $\mathrm{LCL}_{A}{ }^{1}$.

A triple $\vdash_{A}[P] r[Q]$ of the logic means that $\llbracket r \rrbracket_{A}^{\sharp} A(P)=A \llbracket r \rrbracket(P)$. Depends on $\llbracket r \rrbracket_{A}^{\sharp}$: intensional property.

[^0]
Refinement rule

$$
\frac{\vdash_{A^{\prime}}[P] r[Q] \quad A^{\prime} \preceq A \quad A \llbracket r \rrbracket^{A^{\prime}} A(P)=A(Q)}{\vdash_{A}[P] r[Q]} \text { (refine-ext) }
$$

The novel rule (refine-ext).

With this rule, $\vdash_{A}[P] r[Q]$ means that $A \llbracket r \rrbracket A(P)=A \llbracket r \rrbracket(P)$. Only depends on $\llbracket r \rrbracket$: extensional property!

Logical completeness

Theorem

If $A \llbracket r \rrbracket A(P)=A \llbracket \llbracket \rrbracket(P)$ then $\vdash_{A}[P] r[Q]$.

This statement actually lacks some of the hypotheses, omitted for the sake of presentation.

Derived rules

$$
\frac{\vdash_{A^{\prime}}[P] r[Q] \quad A^{\prime} \preceq A \quad A \llbracket r \rrbracket_{A^{\prime}}^{\sharp} A(P)=A(Q)}{\vdash_{A}[P] r[Q]} \text { (refine-int) }
$$

$$
\frac{\vdash_{A^{\prime}}[P] r[Q] \quad A^{\prime} \preceq A \quad A^{\prime}(P)=A(P)}{\vdash_{A}[P] r[Q]}(\text { refine-pre })
$$

Future works

- Heuristics (when and how to refine)
- Relations to model checking (CEGAR)
- Simplification (simplify instead of refining)
- Metrics (eg. partial completeness)

Thanks for your attention!

Flavio Ascari
§flavio.ascari@phd.unipi.it

[^0]: ${ }^{1}$ Roberto Bruni et al. "A Logic for Locally Complete Abstract Interpretations". In: Logic in Computer Science, 2021.

