Extensive, locally complete abstract interpretation

Flavio Ascari M flavio.ascari@phd.unipi.it

Supervisors Roberto Bruni Roberta Gori

University of Pisa

Università di Pisa

Abstract interpretation	Completeness	Refinement rule	Conclusions
000	000	0000	00
Overview			

Abstract interpretation	Completeness	Refinement rule	Conclusions
•00	000	0000	00
Static analysis			

Get information on program behaviour without executing it.

```
int a[6], b[6];
for (int i = 0; i <= 5; ++i) {
    int j = i * 2;
    a[j] += 1;
    b[i] += i;
}
```

t

Access to a happens out of bounds. Access to b is always correct.

Abstract interpretation	Completeness	Refinement rule	Conclusions
○●○	000	0000	00
Abstract interpretat	tion		

Abstract interpretation	Completeness	Refinement rule	Conclusions
○●○	000	0000	00
Abstract interpreta	tion		

Statia analysia			
000	000	0000	00
Abstract interpretation	Completeness	Refinement rule	Conclusions

Static analysis - over-approximation

Charles and had		at an	
000	000	0000	00
Abstract interpretation	Completeness	Refinement rule	Conclusions

Static analysis - over-approximation

Abstract interpretation	Completeness	Refinement rule	Conclusions
000			
Static analysis	over_approving	tion	

Static analysis - over-approximation

Abstract interpretation	Completeness	Refinement rule	Conclusions
000			
Static analysis	over_approving	tion	

False alarm!

Abstract interpretation	Completeness	Refinement rule	Conclusions
000	000	0000	00
Static analysis - ov	er-approximatior	1	

Abstract interpretation	Completeness	Refinement rule	Conclusions
	●oo	0000	00
Completeness			

A is complete for r if

$A[\![\mathsf{r}]\!]A = A[\![\mathsf{r}]\!]$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	●00	0000	00
Completeness			

 \boldsymbol{A} is complete for \boldsymbol{r} if

$$A[\![\mathsf{r}]\!]A = A[\![\mathsf{r}]\!]$$

Local completeness

A is locally complete for r on P if

A[[r]]A(P) = A[[r]](P)

Abstract interpretation	Completeness	Refinement rule	Conclusions
	●00	0000	00
Completeness			

 \boldsymbol{A} is complete for \boldsymbol{r} if

$$A[[\mathbf{r}]]A = A[[\mathbf{r}]]$$

Local completeness

A is locally complete for r on P if

$$A\llbracket r \rrbracket A(P) = A\llbracket r \rrbracket(P)$$

Both *extensional* properties, only depending on [r] and not r.

Abstract interpretation	Completeness ●00	Refinement rule	Conclusions 00
Completeness			

 \boldsymbol{A} is complete for \boldsymbol{r} if

$$A[[\mathbf{r}]]A = A[[\mathbf{r}]]$$

Local completeness

A is locally complete for r on P if

$$A\llbracket r \rrbracket A(P) = A\llbracket r \rrbracket(P)$$

Both *extensional* properties, only depending on **[**r**]** and not r. However state of the art techniques prove *intensional* properties such as

$$\llbracket r \rrbracket_A^{\sharp} A = A \llbracket r \rrbracket$$
$$\llbracket r \rrbracket_A^{\sharp} A(P) = A \llbracket r \rrbracket(P)$$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	○●○	0000	00
Intensional vs ex	ctensional		

r = skip

Abstract interpretation	Completeness	Refinement rule	Conclusions
	○●○	0000	00
Intensional vs ex	tensional		

$$r = skip$$

$$r' = x := x + 1; x := x - 1$$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	○●○	0000	00
Intensional vs ex	tensional		

$$r = skip$$

$$r' = x := x + 1; x := x - 1$$

Different syntax $\mathbf{r} \neq \mathbf{r}'$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	○●○	0000	00
Intensional vs ex	tensional		

$$r = skip$$

$$r' = x := x + 1; x := x - 1$$

Different syntax $r \neq r'$ but same semantics [r] = [r']!

Abstract interpretation	Completeness	Refinement rule	Conclusions
	00●	0000	00
Example			

Analysis in
$$A = \text{Sign} = \{\bot, +, -, 0, \top\}.$$

$$r = skip$$
 $r' = x := x + 1; x := x - 1$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	00●	0000	00
Example			

Analysis in
$$A = \text{Sign} = \{\bot, +, -, 0, \top\}.$$

$$r = skip$$
 $r' = x := x + 1; x := x - 1$

$$\llbracket r \rrbracket_A^{\sharp} A = \mathsf{id} = A \llbracket r \rrbracket$$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	○○●	0000	00
Example			

Analysis in
$$A = \text{Sign} = \{\bot, +, -, 0, \top\}.$$

$$r = skip$$
 $r' = x := x + 1; x := x - 1$

$$\llbracket r \rrbracket_{A}^{\sharp} A = \mathsf{id} = A \llbracket r \rrbracket \qquad \qquad \llbracket r' \rrbracket_{A}^{\sharp} A \neq \mathsf{id} = A \llbracket r' \rrbracket$$

$$\begin{bmatrix} \mathbf{r}' \end{bmatrix}_{A}^{\sharp} A(0)$$

$$= \begin{bmatrix} \mathbf{x} := \mathbf{x} - 1 \end{bmatrix}_{A}^{\sharp} \begin{bmatrix} \mathbf{x} := \mathbf{x} + 1 \end{bmatrix}_{A}^{\sharp} (0)$$

$$= \begin{bmatrix} \mathbf{x} := \mathbf{x} - 1 \end{bmatrix}_{A}^{\sharp} (+)$$

$$= \top$$

Abstract interpretation	Completeness	Refinement rule	Conclusions
	000	●000	00
Local Completenes	s Logic		

The proof system LCL_A^1 .

A triple $\vdash_A [P]$ r [Q] of the logic means that $\llbracket r \rrbracket_A^{\sharp} A(P) = A \llbracket r \rrbracket(P)$. Depends on $\llbracket r \rrbracket_A^{\sharp}$: intensional property.

¹Roberto Bruni et al. "A Logic for Locally Complete Abstract Interpretations". In: Logic in Computer Science, 2021.

Abstract interpretation	Completeness	Refinement rule	Conclusions
000	000	0●00	00
Refinement rule			

$$\frac{\vdash_{A'} [P] \mathsf{r} [Q] \quad A' \preceq A \quad A[\![\mathsf{r}]\!]^{A'} A(P) = A(Q)}{\vdash_{A} [P] \mathsf{r} [Q]} \text{ (refine-ext)}$$

The novel rule (refine-ext).

With this rule, $\vdash_A [P] r [Q]$ means that A[[r]]A(P) = A[[r]](P). Only depends on [[r]]: extensional property!

Abstract interpretation	Completeness	Refinement rule	Conclusions
	000	00●0	00
Logical complete	ness		

Theorem

If A[[r]]A(P) = A[[r]](P) then $\vdash_A [P] r [Q]$.

This statement actually lacks some of the hypotheses, omitted for the sake of presentation.

Abstract interpretation	Completeness	Refinement rule	Conclusions
	000	000●	00
Derived rules			

$$\frac{\vdash_{A'} [P] \mathsf{r} [Q] \quad A' \preceq A \quad A[[\mathsf{r}]]_{A'}^{\sharp} A(P) = A(Q)}{\vdash_{A} [P] \mathsf{r} [Q]} \text{ (refine-int)}$$

$$\frac{\vdash_{\mathcal{A}'} [P] \mathsf{r} [Q] \quad \mathcal{A}' \preceq \mathcal{A} \quad \mathcal{A}'(P) = \mathcal{A}(P)}{\vdash_{\mathcal{A}} [P] \mathsf{r} [Q]} \text{ (refine-pre)}$$

Abstract interpretation	Completeness	Refinement rule	Conclusions
000	000	0000	●0
Euturo works			

- Heuristics (when and how to refine)
- Relations to model checking (CEGAR)
- Simplification (simplify instead of refining)
- Metrics (eg. partial completeness)
- . . .

Thanks for your attention!

Flavio Ascari flavio.ascari@phd.unipi.it